In the figure, \(\rm \ln{(r_i)}\) is plotted as a function of \(\

In the figure, \(\rm \ln{(r_i)}\) is plotted as a function of \(\
|

In the figure, \(\rm \ln{(r_i)}\) is plotted as a function of \(\rm 1/T\), where \(\rm r_i\) is the intrinsic resistivity of silicon, \(\rm T\) is the temperature, and the plot is almost linear

The slope of the line can be used to estimate

A. <span style="font-family:arial,sans-serif">Band gap energy of silicon E<sub>g</sub></span>

B. sum of electron and hole mobility in silicon&nbsp;<strong>&mu;<sub>n</sub> +&nbsp;&mu;<sub>p</sub>&nbsp;</strong>

C. reciprocal of the sum of electron and hole mobility in silicon <strong>(&mu;<sub>n</sub> +&nbsp;&mu;<sub>p</sub>)<sup>-1</sup></strong>

D. intrinsic carrier concentration of silicon&nbsp;<span class="math-tex">\(\rm (n _i)\)</span>

Please scroll down to see the correct answer and solution guide.

Right Answer is: A

SOLUTION

Concept:

We know that the conductivity of Intrinsic semiconductor is given by:

σi = ni q (μn + μp)

Also, the intrinsic carrier concentration is defined as:

\({n_i} = \sqrt {{A_0}} {T^{\frac{3}{2}}}{e^{ - {E_{G0}}/2KT}}\)

The intrinsic conductivity will be:

\({\sigma _i} = \sqrt {{A_0}} {T^{3/2}}{e^{ - {E_{G0}}/2KT}}q\left[ {{\mu _n} + {\mu _p}} \right]\)

Also, we know that:

\({\mu _n} \propto {T^{ - \frac{3}{2}}}\) and \({\mu _p} \propto {T^{ - \frac{3}{2}}}\)

\({\mu _n} = {\mu _{n0}}{T^{ - \frac{3}{2}}}\) and \({\mu _p} = {\mu _{{p_0}}}{T^{ - \frac{3}{2}}}\)

The conductivity Equation (1) can now be written as:

\({\sigma _i} = \sqrt {{A_0}} {e^{ - {E_{G0}}/2KT}}q{T^{\frac{3}{2}}}\left[ {\mu_{n_0} + \mu_{p_0}} \right]{T^{ - 3/2}}\)

\({\sigma _i} = \sqrt {{A_0}} {e^{ - {E_{G0}}/2KT}}q\left[ {{\mu _{{n_0}}} + {\mu _{{p_0}}}} \right]\)

Since the Resistivity is the inverse of conductivity, we can write:

\({p_i} = \frac{1}{{{\sigma _i}}}\)

\({p_i} = \frac{1}{{\sqrt {{A_0}} {e^{ - {E_{G0}}/2KT}}q\left( {\mu_{n_0} + \mu_{p_0}} \right)}}\)

\(ln{p_i} = ln1 - ln\left[ {\sqrt {{A_0}} {e^{ - \frac{{{E_{G0}}}}{{2KT}}}}V\left( {{\mu _{{n_0}}} + {\mu _{{p_0}}}} \right)} \right]\)

\(ln{p_i} = 0 - \left[ {ln\sqrt {{A_0}} - \frac{{{E_{G0}}}}{{2KT}} + lnV\left( {{\mu _{{n_0}}} + {\mu _{{p_0}}}} \right)} \right]\)

\(ln{p_i} = \frac{{{E_{G0}}}}{{2K}}\frac{1}{T} + ln\left[ {\sqrt {{A_0}} V\left( {{\mu _{{n_0}}} + {\mu _{{p_0}}}} \right)} \right]\)

Comparing this with the equation of the line: y  = m x + C, we get the slope as:

\(m = \frac{{{E_{G0}}}}{{2K}}\) = Band Gap energy of silicon.